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This paper presents a method for analysing the hydroelastic interaction during the impact of
a structure with water. The completely coupled equation for #uid #ow and structural response
is solved by the boundary element method for the former and by the "nite element method for
the latter. During the impact, the nonlinear free surface boundary condition is satis"ed,
including proper treatment of the jet, and the full interaction with the linear elastic structure is
taken into account. The convergence of the code is veri"ed by di!erent #uid domain and mesh
sizes and di!erent time steps. The accuracy of the code is con"rmed by comparing the obtained
results with published data. Various examples of a V-shape structure impacting vertically upon
water are provided. The numerical result from this coupled analysis shows that the hydroelas-
ticity has di!erent e!ects on the dynamic response of the body with di!erent deadrise angles,
which may have some important implications for structural design.
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1. INTRODUCTION

THE FLUID}STRUCTURE IMPACT problem is of great importance in many engineering applica-
tions. When the structure enters water at high speed, it may encounter very high hy-
drodynamic pressure and the structure may be damaged as a result. Cases of severe damage
to ship bows due to impact have been reported (Vamammoto et al. 1985).

Von Karman (1929) appears to be the "rst to have studied the impact problem. Since his
work, there has been a considerable number of publications on this problem. Most
researchers used or extended Wagner's #at-plate approximation (Wagner 1932) and the
work mainly concentrated on rigid bodies. There are fewer studies which deal with the
hydroelastic e!ects on the impact. Earlier applications based on the framework of Wagner
include that by Meyerho! (1965) and by Wilkinson et al. (1968).

In other analyses, numerical methods have also been used for the #uid loading. Typical
examples include the work by Belystchko & Mullen (1981). They studied the #uid}structure
interaction for a two-dimensional cylindrical shell entering water in a short tank. The
hydrodynamic problem is solved using the Navier}Stokes (N}S) equations based on the
"nite di!erence method. One of the di$culties in the analysis is that the shape of the wetted
surface and the velocity distribution over it are unknown before the N}S equations are
solved, which in turn depend on these unknown parameters. To overcome this, Belystchko
& Mullen have used the solution from the last time step to obtain the boundary condition
0889}9746/00/010127#20 $35.00/0 ( 2000 Academic Press



Figure 1. De"nition of computational domain.
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for the N}S equations on the wetted surface at the current time step. Once the hy-
drodynamic problem is solved, the obtained #uid loading on the wetted surface can be used
as the external force for the structural response. The solution from the structural analysis
will give a new boundary condition on the wetted surface for the N}S equations at the next
time step. Evidently, although this method takes into account the interaction between the
#uid and the body, the hydrodynamic and structural analyses are entirely separated. In fact,
the technique is similar to the explicit method in the N}S equations. Although it is simple,
the method is less accurate than the implicit technique and is prone to instability in the time
domain.

To fully take into account the interaction between the #uid and the body through the
wetted surface, it seems that iteration is inevitable. At each time step, the technique starts
the hydrodynamic analysis based on the assumed shape of the wetted surface and the
velocity distribution, for example, using the solution of the previous time step. The #uid
loading obtained is used in the structural analysis to obtain the surface shape and the
velocity distribution. If the di!erence between the assumed and the newly obtained value is
within an acceptable error, the iteration stops; otherwise, the calculation continues. An
application based on this technique has been made by Gu et al. (1991) when analysing
a rotated cylindrical shell with #at bottom entering water vertically. Although this method
is more accurate and is known to be less prone to instability in the time domain, it usually
takes far more CPU.

In this paper, a method di!erent from those discussed above is presented. The #uid #ow is
solved based on potential #ow theory, which is known to give satisfactory results for this
type of problem. The #uid loading is obtained from Bernoulli's equation. To overcome the
di$culty associated with the nonlinear terms and to avoid the iterations, a scheme similar
to the semi-implicit method in the N}S equations is used. Bernoulli's equation is e!ectively
linearized by taking results for some terms from the solution obtained at the last time step.
The equations for hydrodynamic and structural analyses are then combined to form a new
matrix equation which is solved to provide results for both #uid #ow and the structural
response simultaneously. The results obtained by this technique have been compared with
the solution from the iterative method. It is found that they are in excellent agreement, but
the former method takes far less CPU.

In this paper, the hydrodynamic problem is solved based on the boundary element
method (BEM) together with the fully nonlinear free surface condition. The structural
response is analysed based on linear elastic theory using the "nite element method (FEM).
The full #uid}structure interaction is included in the manner described above. The jet
formed along the body surface is treated by introducing an extra jet-element, similar to that
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adopted by Zhao & Faltinsen (1993). However, here we also impose some condition on the
jet thickness, which leads to a better simulation for the jet #ow. Numerical results for
a V-shaped structure impacting vertically upon water with constant speed are provided.
The wave elevation and pressure distribution corresponding to the rigid body have been
compared with those obtained from Zhao & Faltinsen (1993) and good agreement has been
found. Extensive results are provided to show the e!ects of the thickness and the deadrise
angle of the plate on the hydroelastic interaction.

2. THEORY

The #uid #ow is assumed to be inviscid and incompressible, and gravitation is ignored.
Figure 1 shows a two-dimensional elastic V-shaped structure entering the initially calm
water with a vertical velocity. The origin of the global coordinate system and the x-axis are
located on the undisturbed water surface. The y-axis points upwards and is the symmetry
line of the structure. The structure is composed of two elastic plates, which are hinged at the
joint point A and at the edge points H and I. The moving coordinate system 0@-x@-y@ in the
"gure is de"ned with x@-axis parallel to the x-axis, the y@-axis parallel to the y-axis and origin
0@ being located at point A. As shown in Figure 1, X is the #uid domain, and
LX"S

s
#S
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#S
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#S

=
is the #uid boundary, where S

s
is the wetted surface of the
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f

is the free surface, S
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is the boundary at in"nity. ¸ and

h used in what follows denote the length and thickness of the plate on each side, respectively.

2.1. HYDRODYNAMIC ANALYSIS

Based on the above assumptions, the hydrodynamic analysis can be made using velocity
potential #ow theory. The potential / satis"es the Laplace equation

+ 2/"0, (x, y)3X. (1)
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will remain on the free surface at all times, namely

Dx

Dt
"

L/

Lx
,

Dy

Dt
"

L/

Ly
, (x, y)3S

f
. (2)

The dynamic condition on the free surface assumes that the hydrodynamic pressure on S
f
is

equal to the atmospheric pressure which is taken as a constant. This leads to
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where D/Dt denotes the substantial derivative with respect to time t. The rest of the
boundary conditions can be written as
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(4)

where n is the unit normal vector to the boundaries of the #uid domain, and its positive
direction points out of the #uid domain; V is the velocity of the rigid motion of the body,
and wR is the normal velocity component of the elastic displacement of the structure, its
positive direction being opposite to n.



Figure 2. Local coordinate system of the kth boundary element.
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The direct boundary integral method is used to solve the above potential #ow problem.
The boundary of the #uid domain is divided into straight-line segments (boundary ele-
ments). The values of / and /

n
are de"ned at the both nodes of each element and a linear

variation of / and /
n

within the element is assumed. Thus
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where f can be either / or /
n
, f

1
and f

2
are the values at the nodes, l is the length of the

element, m
1

is the coordinate of the "rst point of the element along the m-axis de"ned in
Figure 2. The boundary integral equation at node p can then be written as
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where a is the solid angle of the boundary at the "eld point p, q is the source point on the
boundary, G(p, q)"ln(r) and r is the distance between p and q. Substituting equation (5)
into equation (6) leads to the following discrete equation:
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in which i corresponds to node p, N
e
is the total number of nodes, k

1
and k

2
denote the "rst

and second nodes of the kth element on the boundary. The other parameters in equation (7)
are de"ned as
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where, as shown in Figure 2, p
i
is the ith node of the boundary, q

k1
and q

k2
are the "rst and

second nodes of the kth boundary element, the 0}m axis of the local coordinate system is
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located on the straight line formed by the kth element, and the 0}g axis is perpendicular to
the element and passes through node p

i
. The positive direction of axis 0}g is the same as that

of the normal vector n. In equations (7) and (8), m
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in which (x
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) is the global coordinate of the node p

i
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.
By rearranging equation (7), the boundary integral equation can be reduced to an

algebraic equation. The following matrix equation can then be derived:

[H]M/N"[G]M/
n
N (10)

in which [H] and [G] are the coe$cient matrices; they and are only functions of the
geometry of the boundary of the #uid domain, and can be calculated analytically through
equations (8) and (9).

After taking into account di!erent types of boundary condition on LX and moving all the
unknown variables to the left-hand side of the equation, the above matrix equation can be
rewritten as

[Hs Gf Hb`=]G
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/f
n
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n

H, (11)

where the superscripts s, f and b#R indicate the boundaries de"ned in Figure 1.
If the structural response wR in equation (11) is known, the solution for the #uid #ow can

then be found. As the time step progresses, the potential / on the free surface and the wave
elevation can be updated using equations (2) and (3). At the initial time step, / on the free
surface and the wave elevation are assumed to be zero.

The numerical procedure adopted here is similar to that adopted previously by others
(Lin et al. 1985; Greenhow 1987; Wu & Eatock Taylor 1995). In fact, the linear interpolation
function used here is virtually the same as that in the cited publications. The di!erence is
that we have used a real potential rather than a complex potential, which is limited to
two-dimensional #ow only. Also the method used in this work to deal with the intersection
point of the body and the free surface is somewhat di!erent from that used in the complex
potential theory method. Here, at the contact point, L//Ln is discontinuous and has two
values. In the calculation it is treated as known on the body surface, but unknown on the
free surface. The latter is then found from the solution of equation (11). The potential at the
contact point is continuous and is known from the free surface boundary condition.

A known di$culty of this problem is the jet formed during the impact. In the initial
stages, before the jet is developed, the mesh structure near the intersection point is shown in
Figure 3(a). As water moves continuously along the body surface, the angle between F

1
F

2
and F

1
P
2
becomes smaller and smaller. When the angle is below a threshold value, it is then

di$cult to maintain the accuracy of the results. When that happens, the "rst element on the



Figure 3. Sketch of grid near intersection point (F
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free surface, F
1
F

2
, will be deleted, and an extra jet element will be introduced into the

calculation by moving point F
1

along the body surface, so that F
1
F
2

becomes perpendicu-
lar to the body surface. The potential on F

1
is obtained by interpolation of the results on the

body surface. The mesh structure after the jet has been cut is shown in Figure 3(b). Here the
jet movement along the body surface is determined by the movement of point F

1
. According

to the numerical experiments, a suitable threshold angle should be around n/20}n/60. In
our computation, we mainly cut the jet by using a maximum value of jet thickness, which
means that a jet thinner than this thickness will be taken out of the calculation. A suitable
jet thickness is found to be dependent on the deadrise angle. Usually, a smaller deadrise
angle corresponds to a smaller maximum value. As expected, our numerical simulation
suggests that a larger maximum thickness corresponds to a shorter remaining jet and
a smaller thickness will lead to a longer remaining jet. A longer jet will normally give a more
stable pressure distribution along the wetted body surface, and can reduce and even avoid
oscillations of pressure near the intersection point as noticed by Zhao & Faltinsen (1993)
and in this work. After the jet element is introduced into the calculation, if the angle between
F
2
F
3

and the body surface becomes smaller than the threshold value, this element will be
cut in the manner described previously. If the jet is not cut, it will become longer and longer,
and thinner and thinner. It will require a mesh of su$cient resolution to maintain the
accuracy of the calculated results. This may be necessary if the detailed #ow structure is
needed within the jet. The result itself, however, has little e!ect on the deformation of the
structure as the pressure within the jet is almost constant and is equal to atmospheric
pressure.

2.2. STRUCTURAL ANALYSIS

The "nite element method is used to analyse the elastic response of the structure. The plates
on both sides are divided into two-node "nite elements. In the local coordinate system 0

k
}x

k
on element k, as shown in Figure 4, the nodal displacement vector MdN

,
of the element can be

expressed as
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where w
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are the displacements of nodes, and h
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are the angles of rotation which
are positive in the clockwise direction.

The relation between the deformation curve and the nodal vector MdN
k
can be written as

(Timoshenko et al. 1972)
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Figure 4. Structural element.
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in which

[H]"[1 x
k

x2
k

x3
k
] (14)
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from Figures 2 and 4, it is evident that x
k
"m!m

k1
.

It should also be pointed out that a straight line within an element is used for hy-
drodynamic analysis while a curve is used in the structural analysis. Strictly speaking
therefore, the body surface boundary condition for the #uid #ow is not exactly imposed on
its surface because of the gap between the straight line and the curve. But the gap is
negligibly small in reality. Thus, the error due to this apparent incompatibility is not
expected to be more signi"cant than that due to the fact the boundary condition is imposed
on the nodes of the element only, rather than everywhere within the element. Both errors
will of course diminish when all the elements become smaller and smaller.

The dynamic equilibrium equation of the element can be expressed as (Timoshenko et al.
1972)
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where [M]
k

is the element mass matrix, [K]
k

is the element sti!ness matrix, MFN
k

is the
equivalent nodal load vector of the element. [M]

k
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in which o is the density of the structure and is assumed to be a constant,
D"Eh3/[12(1!k2)] is the sti!ness coe$cient of the plate, E is the elastic modulus, and k is
the Poisson ratio. Structural damping has been ignored in equation (16).
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In the case of the impact problem, the nodal load is derived from Bernoullis equation in
the hydrodynamic analysis. The expression for MFN

k
can be written as

MFN
k
"[R]TP

mk2

mk1
[H]Tp

k
(m, t) dm, (18)

in which p
k
(m, t) is the impact pressure over the kth element, and m

k1
and m

k2
are shown in

Figure 2.
The global structural equilibrium equation can be obtained by assembling the element

equilibrium equation (16),

[M]Md$ N#[K]MdN"MFN (19)

in which [M], [K] and MFN are the global mass matrix, sti!ness matrix and nodal load
vector, respectively. When the pressure distribution acting upon the plates is found, the
structural response can be obtained by solving equation (19).

2.3. COUPLED HYDROELASTIC EQUATION

The coupled hydroelastic equation can be derived from equations (11) and (16). During
water entry, the hydrodynamic pressure acting upon the wetted surface can be obtained
from Bernoulli's equation,
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In order to obtain the global coupled structural equilibrium equation, we shall "rst

linearize the nonlinear terms in equation (20). Writing +/"(/
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where the subscripts n and q indicate the components in the normal and tangential
directions, respectively, and applying the interpolation function in equations (5)}(20), we
obtain the following expression for the pressure on the kth element:
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and the meaning of subscripts k
1

and k
2

is the same as that in equation (7). Here, the values
of the potential and its normal derivatives in equation (22) are taken from the solution at the
previous time step. Equation (21) then becomes linear. This procedure is somewhat similar
to the semi-implicit scheme used in solving the Navier}Stokes equations.

Substituting equation (21) into equations (18) and (16) and using <
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Matrices [A]
k
, [B]

k
and [C]

k
are generated by integrating equation (18). Assembling

equation (23) and combining it with equation (11), the coupled hydroelastic equation can be
written as

C
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in which matrices [A], [B] and [C] are assembled from [A]
k
, [B]

k
and [C]

k
, respectively,

and columns of zeros have also been added to ensure that the number of columns is the
same as the number of rows.

The second term on the left-hand side of equation (26) indicates that the coupled
structural and hydrodynamic equation will introduce a term similar to damping in the
system even though the structural damping is neglected. In the calculation, the FEM for
structural analysis and BEM for hydrodynamic analysis have identical element nodes on
the wetted surface, while the integration in equation (18) is performed along the boundary
element.

It is also worth noting that equation (26) does not contain the rows corresponding to the
displacements at the ends of the plate, because they are zero, based on the boundary
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condition. Also since the shear force from the ends will be present only in these rows, they
will not have any contribution to equation (26).

3. NUMERICAL RESULTS

A computer program has been developed for calculating the interactive response of the
structure impacting water with constant speed. In the program, equation (26) is solved by
the Newmark direct integral method (Bathe & Wilson 1976).

During the impact, the intersection points G and B (see Figure 1) will move up along
the body surface. At each time step, the intersection point may not always fall on the node of
the boundary element. When the intersection point moves to a position within an element,
the upper limit of the integration in equation (18) should be set at the intersection
point beyond which the pressure is zero. As a result, changes have to be made in equation
(25).

Unless speci"ed otherwise, the parameters used in the numerical computation are as
follows: length of plate ¸"0)4 m, speed of entry <"1)0 m/s, elastic modulus of plate
E"200 GPa, Poisson's coe$cient of plate l"0)3, density of plate material
o"7800 kg/m3, density of water o

w
"1000 kg/m3. Symmetry about x"0 is used in the

calculation. The plate is divided into elements of the same length Dx. On the free surface and
along the symmetry line, the element size varies. Larger elements are used away from the
body to reduce the CPU requirement. The size of the element on the free surface at the
intersection with the body, excluding the jet element, is set equal to that of the element on
the plate. Convergence has been tested by varying these parameters (reducing the time step
and the element size, and increasing the computational domain).

3.1. VALIDATION

The FEM program for the structural analysis has been veri"ed by comparing the calculated
results with the analytical solution for the problem of dynamic response of a plate under
transient rectangular impulse load, and good agreement has been found. The BEM code for
hydrodynamic analysis has been used for the cases of rigid V-shaped wedges entering the
water surface, with deadrise angles b"10, 20, 30, 45 and 603, respectively. Figures 5}9 show
the comparison between the calculated results and those obtained by Zhao & Faltinsen
(1993), and good agreement can be found. In these computations, the maximum jet
thickness is set equal to the length of the element on the plate. From the wave pro"les in
these "gures, it can be seen that the jet is longer than that given by Zhao & Faltisen (1993),
which will help improve the results for deformation by reducing the oscillation of the
pressure near the intersection. The pressure is very small within the jet and tends to zero at
its tip. Zhao & Faltinsen have shown that the numerical results are in good agreement with
the similarity solution (Doborav'skaya 1969) at larger deadrise angle. A di!erence appears
at b"303, as seen in Figure7(b), which may be due to numerical error in the similarity
solution, as suggested by Zhao & Faltinsen (1993).

Figure 10 gives results for the impact of the rigid plate (b"303), using di!erent #uid
domain sizes. The element size is set to Dx"0)004 m. For a domain 12 m in length by 20 m
in depth, 100 elements are used on the free surface and 80 elements on the symmetry line;
while for the case of 6 m]10 m, 50 elements are used on the free surface and 40 on
the symmetry line; and for the case of 3 and 5 m, 25 are used on the free surface and 20 on
the symmetry line. The elements are distributed in the manner described above. The "gure
shows that the di!erence between the "rst and second cases is quite small, and the latter is
used in the following calculation.
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Figure 9. Results for rigid impact at b"603: (a) free surface pro"le; (b) pressure distribution. **, Zhao
& Faltinsen; * present result.
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Convergence with respect to mesh size is shown in Figure 11. It gives the time history of
the displacement at the centre-point of the plate with b"453 and h"3 mm. The calcu-
lation is made based on the fully coupled method shown in equation (26). The hy-
drodynamic pressure at the initial stage is obtained from the rigid-body solution. The
interaction computation starts after a very small part of the structure has entered the water,
which is to avoid processing three di!erent boundary conditions when the tip of the wedge
just touches the water. From the result, we can see that the displacement converges with the
mesh size.

In order to further verify the coupled analysis, we have also developed a program based
on the iterative method to calculate the hydroelastic interaction. The #owchart of the
program is given in the appendix. Figure 12 gives the comparison between the results
obtained from these two methods for the displacement at the mid-point of the plates with
b"453, h"3 mm and di!erent time steps. The relative error EPS for iterative calculations
in these cases is set to 1%. The "gure shows that there is a noticeable di!erence between
the result from the iterative method and that from the coupled method at Dt"0)05 ms.



Figure 10. Convergence test with di!erent #uid domains.**, length"12 m, height"20 m; } } } }, length"6 m,
height"10 m; -)-)-)-, length"3 m, height"5 m.

Figure 11. Convergence test with di!erent element sizes: } } } }, *x"0)08 m; -)-)-)-, *x"0)04 m;
**, *x"0)025 m.
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The di!erence may be due to two reasons. One is that the coupled method is similar to the
semi-implicit technique, while the iterative method corresponds to the fully implicit tech-
nique. The other reason is that the plate in this case is relatively #exible and its deformation



Figure 12. Convergence test with di!erent time steps:*K*, f"0)05 s (iterative); ------, t"0)05 s (coupled);*]*,
t"0)01 s (iterative); -)-)-)-, t"0)01 s (coupled).

Figure 13. Middle point deformation for b"453: (a) h"5 mm; (b) h"8 mm; (c) h"11 mm: **, coupled;
-----, decoupled.
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is sensitive to the accuracy of the pressure calculation. A "ner mesh and smaller time step is
required to eliminate the di!erence entirely which means many days of calculation for each
case and therefore such an attempt was not made in the present work. On the other hand,



Figure 13. Continued
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this "gure gives the worst case observed in the calculation, and this type of di!erence
becomes smaller, even graphically invisible, when the plate becomes thicker.

One important feature which should be highlighted here is the e!ect of the jet on the
calculated results. As observed by Zhao & Faltinsen (1993), the pressure on the body surface
oscillates sharply near the intersection. This oscillation is not physical but due to numerical
inaccuracy. This unwelcome feature, however, has little e!ect on the results obtained by
Zhao & Faltinsen for two reasons: (i) the oscillation is localized in a small area, and (ii) the
pressure obtained from Bernoulli's equation does not give any feedback to the potential,
and therefore the error in the pressure will not propagate into other areas or accumulate in
the time domain. The situation in the present case is quite di!erent. The oscillation in
pressure will cause error in the deformation, which will further lead to numerical inaccuracy
in the potential at the next time step. Thus, removing oscillations in the pressure near
the intersection is essential for ensuring stable and accurate results throughout the time
domain. This is mainly achieved by properly limiting the jet thickness as discussed in
the last paragraph of Section 2.1. What this also means, however, is that with di!erent time
steps the jet may be cut at di!erent instants. This clearly has implications for the conver-
gence of the results in Figure12 with respect to time step.
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3.2. RESULTS FOR DIFFERENT PLATE THICKNESS AND DEADRISE ANGLE

In order to examine how important the hydroelastic coupling e!ect on the response of the
structure is, the case of the V-shape structure with di!erent plate thicknesses impacting
water is calculated by two methods. One uses the pressure obtained from the rigid body
solution and the structural and hydrodynamic analysis are therefore decoupled. The other
uses the fully coupled analysis described in Section 2.3.

Figure 13 gives the comparison of results obtained from the decoupled and coupled
methods for the elastic displacement at the middle point of the plate with deadrise angle
b"453 and di!erent thicknesses. They show that the coupling e!ect on the displacement
depends very much on the thickness of the plate. When the plate thickness becomes smaller,
the di!erence between the displacements from the two methods is also smaller. This
indicates that the coupling e!ect becomes relatively less signi"cant with the decrease of the
plate thickness. This is because the structural sti!ness decreases sharply with thickness and
the structure will be quite #exible at small thickness. As a result, the restoring force due to
Figure 14. Middle point deformation for b"303: (a) h"5 mm; (b) h"8 mm; (c) h"11 mm: **, coupled;
-----, decoupled.



Figure 14. Continued
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elastic deformation will be small and the displacement will increase until the restoring force
is large enough to balance the external loading. The overall displacement of a thin plate will
therefore be larger than that of a thicker plate but the coupling e!ect is relatively less
signi"cant. With the increase of the plate thickness, although the overall displacement
becomes smaller, the coupling e!ect on the structural elastic response is relatively more
signi"cant, as shown in Figures 13(b) and 13(c).

Figure 14 gives the comparison of results from coupled and decoupled method for
deadrise angle b"303. They are di!erent from those for b"453. These "gures show that,
even when the plate is thin (h"5 mm), the coupling e!ect between #uid and structure is
signi"cant. It may be due to the di!erent pressure pro"les over the structure at di!erent
deadrise angles. For b"303, the pressure changes sharply near the jet area, but the pressure
distribution for b"453 varies very little, as seen in Figures 7 and 8.

4. CONCLUSIONS

A numerical method has been developed for the fully coupled analysis of the hydroelastic
response of a structure impacting water with constant speed. The coupled equation is set up
by combining the BEM-based hydrodynamic calculation and the FEM-based structural
analysis. The jet #ow formed during impact has been properly treated. The developed
method has been veri"ed by applying the BEM and FEM for hydrodynamic and structural
analysis separately and comparing the results obtained with known data. The method is
further veri"ed by convergence tests and by comparing the results obtained from the fully
coupled method with an iterative method.

Based on the cases investigated under the conditions speci"ed in this paper, some
conclusions can be drawn as follows.

(i) By introducing an extra jet element, the jet #ow has been properly treated in the
present numerical program. Setting a suitable maximum jet thickness can reduce oscillation
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of the pressure near the intersection point. This will improve the accuracy for deformation
and reduce the accumulated error in the time-domain analysis.

(ii) Fluid}structure interaction strongly a!ects the structural responses during impact
with water. In most cases, the results from the coupled and decoupled methods are quite
di!erent. One exception is when the plate is su$ciently thin.

(iii) The method presented in this paper o!ers an e!ective tool which can be extended for
the three-dimensional impact problem. However, further work, including extensive com-
parison with experimental data, is needed before the method is used for practical applica-
tions.
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